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ABSTRACT

The effects’of shoierm drought on soil microbial communities remain largely unexplored,
particularlyat large scales and under field conditions. We used seven experimental sites from
two continents (North America andlustralia) to evaluate the impacts of imposed extreme
drought on_the abundance, community compositimmnessand function of soil bacterial

and fungal.communities. The sites encompassed different grassland ecosystems spanning a
wide range«of.climatic and soil properties. Drought significantly alteredcdmemunity
compositionof,soil bacteria and, to a lesser extent, fungjrasslands from two continents.

The magnitude of the fungal community change was directly proportional to the precipitation
gradient. This«greater fungasensitivity to drought at more mesic sites contrasts with the
generally observed pattern of greater drought sensitivity of plant communitnesre arid
grasslandssuggesting that plant and microbial communities may respond differently along
precipitation gradientsActinobateria, and Chloroflexi, bacterial phyla typically dominant in

dry environments, increased their relative abundance in response to drought, whereas
Glomeromycetes, a fungatlass regarded as widely symbiotidecreased in relative
abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic
species, decreased and increased along the precipitation gradient, respectively. Soil enzyme
activity consistently increased under drought, goase thatwas attributed to drought-
induced changes in microbial community structure rather than to changes in abundance and
diversity. Qur results provide evidence that drought has a widespread effect on the assembly
of microbial*eemmunities, one of theajor drivers of soil function in terrestrial ecosystems.
Such responses may have important implications for the provision of key ecosystem services,
including nutrient cycling, and may result in the weakening of piantebial interactions

and a greatdancidence of certain seborne diseases.
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INTRODUCTION

Microorganisms play fundamental roles as primary producers and decomposers and provide
important ecosystem services such as organic matter decomposition and nutrient cycling and
storage(van _der Heijderet al., 2008; Bardgett & van der Putten, 201#he structure and
activity of microbial communities in soils is influenced by substrate propeggrticularly

soil pH andorganic matter contengnd vegetation type (Fierer & Jackson, 2006; Delgado-
Baquerizoettaly; 2016a) at larger spatial and temporal scales iargn climatic phenmena

such as increasing aridityhave also been associated with lower bacterial and funga
abundance_and. lower microbial diversity (Maesdteal., 2015). However, much less is
known about how shorterm climatic processes, including the more extreme drought events
forecast(Cookwetal., 2015) will affect microbial communities and the ecosystem services

they mediate:

Climate models forecast widespread changes in precipitation regimes, including
longer, more intense droughts (McLaughlin, 2014), causing desertification and promoting the
expansion of'drylands globally (Huaregal., 2016) Field-based climate change studies have
traditionally._focused on aboveground responses (e.g., plant productivity, biandss
community compositiondf local studieswhereas belowground responses, particularly those
of microbial.communities, have received much less attention (Wit@k., 2015, 2017)
Experimental approaches across multiple sites and continents, where contrasting climatic and
edaphic conditions may mediate the impacts of changing precipitation regimesjuaty
needed to accurately predict the response of microbial communities to extreme drought
(Grime ‘et _al., 2008; Fridley et al, 2011). Drought experiments and matalyses
consistently predict negative impacts of drought on the diversity and abundance of soil
microbial communitiegWu et al., 2011) with bacteria typically considered meosensitive
than fungi (Evans & Wallenstein, 2012; Fry et,a016) Given the strong link between
microbialseommunitiesand soil functioning, any alteration in the composition of microbial
communitiesdue toclimate change migtdisruptthe functioning of soil, and thus tisepply
of ecosystem services (Bellaetlal., 2012; McLaughlin, 2014). Because of this, improving
our understanding ofthe role ofaltered precipitation regimes the regulationof soil

microbial communitiess of paramount importance to accuratetgdictchanges in terrestrial
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ecosystem processes linked to future climate change scerfpaestre et al., 2015;
Delgado-Baquerizet al., 2016b).

Grasslands are critically important components of terrestrial ecosystem feedbacks to
climate change. They represent ca. 40% of the total land surface, store ca. 34yt Camal
provide multiple ecosystem servic@dcLaughlin, 2014) Grasslands also greatly contribute
to regulate the inter-annual variability in the soil C sink at the global ¢ealdteret al.,

2014; Ahlstromet al., 2015) and, therefore, understanding how microbial community
structure and functioning responds to drought is essential for predicting impacts of climate
change onrthevglobal C cycle. Climate models for the Central and Southwesthei®
grasslands ‘deminate thendscapepredict an intensification of the hydrological cycle, with
high interannual precipitation variability and fewer but larger rain evedtoket al., 2015)
Similarly, for_southeastern Australiawhere land conversion has transformed more than
ninety percent of native woodlands into seratural grasslands, the most recent climate
models predict-an increase in thecurrencef extreme precipitation events interspersed with
longer droughis=and shifts in precipitation seasonality but little change in total precipitation
(McLaughlin, 2014).

In_this_study, we evaluated the impacts of comparable extreme drought simulation
experiments(50% precipitation reduction) conducted at sevasslgndsocated in two
continents, North America and AustraliBaple 1 and Figure 1). We sampled each site during
the 2 or & year of imposed drought and measured (i) soil microbial community richness
(number ofy\phylotypes) and compositi(relative abundance of phylotypesiii) microbial
abundance; and (iii) the potential activities of enzymes associated with decomposition and
nutrient cyelingby soil microbial communities. The consistency of treatment types between
sites in the USA (66% precipitation reduction during the growing season, equivalent to an
annual reduction of 50%) and Australia (50% year-round reduction; Peiwadr, 2016)
allows for evaluationof responses to experimental drougatross continents. We
hypothesized that, at both inter-continental and local scales, experimental drought will
significantly alter the assembly of microbial communities in grasslands, with bacterial
communities being more sensitive than fungi to watettditiain (Austin et al., 2004; Clarket
al., 2009) Specifically, we predicted that thelative abundance of bacterial taxa such as
Chloroflexi and Actinobacteria, known to be adapted to arid condi{idosstaMartinezet
al., 2014; Maestret al., 2015), would increase in response to drought events. In contrast, we

predicted an increase in potential enzymatic actimityroughted plotsas a result of enzyme
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and substrate accumulation during periods of low soil moigiustin et al., 2004). An
increase in potential enzymatic activity could also be linked to reduced competition with
plants for soil resourcgS$chwinning & Sala, 2004) and/or to greater inputs of orgaaitter

associated with the death of roots and shedding of foliage (Sinsabaugt2@08).

MATERIALS & METHODS

Study sites. The seven sites considered in this study encompass different types of grassland
ecosystems_and span a wide range of climatic and soil conditions (Figlaelé ). None

has been grazed for the last 15 years. Six experimental sites were selected across the Central
and Southwest"US along a large precipitation gradient 8882mm). These sites are part of

the EDGE |(Extreme Drought in Grasslands Experiment) experimental platform

(http://edge.biology.colostate.edlul hey included desert grasslands, shortgrass and tall grass

prairies, and mixed grasslands. Soil texture varied from sandy to clay (Basp et al.,

2015) while=soeil pH ranged from slightly acidic (6.25) at the High Plains Grasslands
Research :Center, Wyoming, to basic (8.82) at Sevilleta National Wildlife Refuge, New
Mexico. Konza Prairie, Kansas, is the only site that is burned annually, while thevest ha

not burnedin récent times.

In addition to the six sites in the US, another study site was selected in Eastern
Australia®(DRIGrass; Drought and Root Herbivore Interactions in a Grassland). The site is a
mesic grassland near Richmond, NSW, Australia, at an elevation of 25 m a.s.l. Mean annual
precipitation,.is.800 mm (Australian Government Bureau of Meteorology, RichmiuvaU-
Hawkesbury Stationl). The soil is a Blackendon Sand, with a sandy loam texture and pH of
6.38. The mest abundant species include C4 grasses sésbrapus fissifolius, Cynodon
dactylon, Cymbopogon refractus, Eragrostis curvula, and Paspalum dilatatum, C3 grasses
including Microlaena stipoides and Lolium perenne, and C3 forbs such adypochaeris
radicata and Plantago lanceolata. Although the sites encompass different types of grassland
ecosystems and span a widange of edapholimatic conditions, DRIGrass is most

comparable to.the mesic American grassland (Konza; Figure 1).

Experimental treatments. The EDGE platform was set up in spring 2013 at Sevilleta and
2014 at the other four sites and uses rainout shelters to impose a drought by reducing each
precipitation event by 66% for the entire growing season, the latter varying between sites.
This is roghly equivalent to a year-round reduction of 50% precipitation. Each experimental

treatment is replicated ten times at each site. Plots are 3 x 4 m and are hydrologically isolated
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from the surrounding soil matrix by aluminum flashing installed to varying depth depending

on site.

The DRFGrassexperiment started in June 2013 and consists of sixty plots (1.9 x 2.5
m) and five precipitation treatments. Plots are covered with fixed rainout shelters, which
exclude ambient precipitation inputs. In this study, weed a sulset of two treatments
(“ambient™ and ‘reduced amount”a-reduction of 50 % compared to ambient) replicated six
times, for a total of twelve plots. The shelters have open sides and are covered with UV
transparent, Perspex roofs slopedaat angt of 18°. Both treatments involve water re
application"through a programmablkeutomated irrigation system. Soil moisture and
temperatureswere continuously recorded using sensors installed in almost all plots. More
detailed information on the field site and experimental design can be found elséndweee
etal., 2016).

Soil sampling=Soils at all sites were collected in 2015 during the main iqi@weason
(March in(Australia and July in the US sites). Eight to ten soil samples were collected from
each plot at a depth of 0-10 cm and bulked. Once in the laboratory, samples were kept at 4°C
until further processing within a few days. A small subsample was also immediately frozen at

-20°C for soil microbial analyses.

Soil propertiessand microbial extracellular enzyme activity analyses. Gravimetric soll

water content(%) was measured after drying a known amount of soil at 70°C and then
weighing it. Soil pH was measured using a 1:2.5 ratio of fresh bulk soil to deionized water.
Soils were ‘assayed for: f-1,4-glucosidase (BG), and B-D-cellobiohydrolase (CBH) enzymes
involved in the degradation of cellulose and other hiet@ed glucans (the major components

of plant cell walls), B-1,4-N-acetylglucosaminidase (NAG), associated with the degradation
of chitin and peptidoglycan (major microbial cell wall components) phrogdphatase (PHOS;
phosphorus mineralization) for the P cycle. Briefly, assays were conducted by homogenizing
1 g of soilxin=30-ml of pH-adjusted 50 mM sodium acetate buffer. The pH of the buffer was
adjusted to,maitch the soil pH of each site (Figure 1). The homogenized solutions were then
added toam96deepwell (2 ml) microplate. Replicate soil slurry controls and 4
methylumbellfferone (MUB) standard curves of 0-100 pum were included in each sample.
Fluorometric substrates (Sigrdddrich, reference numbers: M3633 for BG, M6018 for CBH,
M2133 for NAG, and M8883 for PHOS) were added to soil slurries and then incubated for
1.5 h at 35 °C. Following incubation, the supernatant solution was transferred into

corresponding wells in a black, flat-bottomedWél plate. The plates were then scanned on
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a microplate fluorometer using an excitation wavelength of 365 nm and an emission
wavelength of 450 nm. Enzyme assays for the Australian samples were carried out on the
same day at the Hawkesbury Institute for the Environment, Western Sydney University,
Australia using a 2300, EnSpire® Multilabel Reader (PerkinElmer, Boston, MA, USA),
while samplesfrom all EDGE sites were analyzed on the same day at the University of New
Mexico.

Quantitative PCR. All molecular analyses were undertaken at the Hawkesbury Institute of
the Environment on a subset of three replicates per EDGE site and on all s@r&xRl-
replicates First;we extracted the DNA from each soil sample using the Power Soil kit (Mo
Bio Laborateries, Carlsbad AC USA) following the manufacturer’s instructions. Soils from
DRI-Grass were extracted and stored-83°C until further analyses, while soils from the
EDGE sites were extracted at the University of New Mexico, frozen, and then shipped to
Australia. Once there, all samples were defrosded gPCR reactions carried out using 96
well plates sReactions consisted of 5 pl of polymerase mix, 1 pl of template DNA, 0.3 ul of

each primer,Jand=3.4 pul of H,O, giving a final volume of 10 pul. Bacterial 16S rRNA gene and
fungal internal transcribed spacer (ITS) were amplified with the EulEBB3518 and ITS-1

5.8S primer sets (Evans & Wallenstein, 20I)e abundance of fungi and bacteria were
then expressed as the number of ITS or 16S rRNA gene copsesl grespectively.

Amplicon” sequencing. DNA samples were analyzedsing lllumina MiSeq 2x 301 bp
(bacteria) or 2x 280 bp (fungi) paired end sequencii@pporasoet al., 2012) and the
341F/805R\(bacteria) and FITS7/ITS4 (fungi) primer fideslemanret al., 2011; Ihrmark et

al., 2012) The quality of all lllumina R1 and R2 reads was assessed using Fe&stQ@ws,
2010),low quality regions (Q<20) were trimmed from the 5’ end of the sequences (0 bp from
R1 and 22 bp from R2 for primer set 341F/805R; 5 bp from R1 and 50 bp from R2 for primer
set FITS7ZITS4R) using SEQTK Https://github.com/lh3/seqtk)The paired endswere
subsequently joined using FLASHMago¢ & Salzberg, 2011) Primers were removed from

the resulting sequences using SEQTK and a further round of quality control was conducted in
MOTHUR (Schiesset al., 2009) to discard short sequences (<380 bp for primer set 341F
805R; <150 bp for primer set FITITS4R), as well as sequences with ambiguous characters
or more than 8 homopolymers. Operational Taxonomic Units (OTUs) were built at 97%
sequence similarity using UPARSEdgar, 2013) Singletons were discarded, as well as
chimeric sequences identified by the UCHIME algorithm using the recommended SILVA

gold 16S rRNA gene or UNITE reference databases for bacteria and fungi, respectively
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(Edgaret al., 2011) OTU abundance tables were constructed by running the usearch_global
command(http://www.drive5.com/) Taxonomy was assigned to OTUs in MOTHUR using

the naive Bayesian classifiéiVanget al., 2007) with a minimum bootstrap support of 60%

and the Greengenes database version 13_8 (De8aaitis2006; McDonaldet al., 2012)for
bacteriarorthalynamic UNITE version 6 datas@{dljalg et al., 2013) for fungi The OTU
abundance tables were rarefiedato even number of sequences per sample to ensure equal
sampling depth (8115 sequences for bacteria and and 34403 sequences for fungi), prior to

calculatingialpha diversity metrics using MOTHUR (Schloss e24109).

Statistical analyses and numeric calculations. All analyses reported were carried out in R
version 3.4:(R Core Team, 2017). Enzyme activity data, fungal and bacterial abundance
(log-transformed), richness, diversity, and the dominance of all taxa with a mean relative
abundance_higher than 1% were analyzed using linear raffects modks, with drought
treatment as_the fixed factor and location as a random effect. We also carried out linear
models atsthewsite level with experimental treatment as a fixed factor. Analyses were

performed-using:the “Ime” and “Im” functions fromrh#e and statspackage, respectively

We analyzed changes in the composition and structure of bacterial and fungal
communities by means of permutational analyses of the variance (9999 permutations) using
the “adonis™ function imegan. Samples were nested within sites using the “strata” argument.
Resultsgfrom. the permutational multivariate analyses were visualized by means of two non-
metric multidimensional scalinNMDS) analyses using fungal and bacterial OTU data. For

this, we used.the ‘'metaMDS” function of tlegan package.

To investigate how microbial responses to drought may change along environmental
gradients, we Calculated an Effect Size (ES) of each microbial variable considered, including
the two first components of the NMDS for bacterial and fungal communities. We defined the
ES as thepabsolute difference between the droughted and control plots for each site. We then
carried outsnerparametric Spearmamank correlation analyses (n = 7 sites) betwberESs
and climate AP and MAT) and soil pH. A significant correlation between a predictor
variable andheESs indicates that the magnitude of the response of the dependent microbial

variable to'drought is proportional to the environmental variable.

To build a more holistic understanding of the responses of bacterial and fungal
microbial communities to drought and environmental variation, we carriedtmgetusal

equation modelg¢Grace, 2006) using the “sem” function frohe lavaan package. Alla
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priori models and citations for all hypothetical paths are depicted and referenced in
Supplementary Figure 9 and Appendix A, respectively. Microbial activity was the final
response variable and was computed as the average ofstweezof each individual soil
enzyme (i.e., equivalent to the simple multifunctionality index as described in Meteaitre

2012) Inseurmodel, climate (MAP) and drougiftected all variables bugiven that drought

is an experimental treatmeniiese were independent of each other (i.e., thegxgenous
variables)."Mean annual precipitation was consistently used as our climatic variable over
MAT because we wanted to be able to better predict SWC, which we presumed was a key
variable in our,model. Exploratory analyses also showed tbdéls considerindylAP had a
consistently, better goodness of fit than models using MAT. Soil water content and pH were
hypothesized/to have a direct effect on microbial community attributes (structure, abundance,
diversity and richnessin separate models) and microbial activity. Finally, microbial
community attributes directly influenced microbial activity. Model fit was considered good
when the y° test and its associat&value were low (<2) and high (>0.05), respectively. The
rootdmeansquare error of approximation (RMSEA) was alsoduseevaluate the goodness

of fit. A modelhas a good fit when RMSEA is <0.05 and its assodmatedue is >0.05.

RESULTS

Across all'sites; bacterial communities were consistently dominated by globally distributed
bacterial phyla (Figure 2), including: Actinobacteria (26.1 %), Proteobacteria (23.4 %),
Acidobacteria®(18.0 %), Planctomycetes (6.6 %), Verrocomicrobia (6.4 %), Chloroflexi
(6.1 %), Bacteroidetes (4.5 %), Gemmatimonadetes (2.9 %), and Firmicutes (1.8 %).
Dominant fungal taxa included: Ascomycota (55.0 %), Basidiomycota (24.5 %),
Chytridiomycota (1.8 %), Glomeromycota (2.8 %) and Zygomycota (5.3T%3 microbial
community composition is similar to that reported for global dryldiMisestreet al., 2015)

but contrasts.with previous studies in which Acidobacteria and Basidiomycota were found to
be the dominant bacterial and fungal phyla, respectively, at the glaal(&amirezt al.,

2014; Tedersoo et gl2014) Despite common patterns in the relative abundance of the main
taxa at theshighest taxonomic level (classes/phyla), microbial communities, partiéotarly

fungi, differed widely between sites at the OTU level (Figure 2).

Experimental drought significantly altered the assembly of soil bactér=lQ.001)

and, to a lesser extent, fungal communities=(0.090) across sevesites in two continents
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(Figures 2 and 3 and Supplementary Figures 1-5 and Supplementary Table 1). The magnitude
of the fungal community response to drought at the species (OTU) level was proportional to
the amount of ambient precipitation (Spearman’s rho = 0.8%, (027; Supplementary
Figure 6 and Supplementary Table 2); i.es,found the largest absolute differences between
control and*droughted plots at the most mesic end of the precipitation gradient, represented
by KNZ and HAYS, in the US, and theuétralian site (Figure 2).

Of all taxa with a mean relative abundance higher than 1%, three bacterial phyla
(Actinobacteria, Chloroflexiand Gemmatimonadetes), seven classes (Rubrobacteria,
Acidobacteriia,, Deltaproteobacteria,Thermoleophilia, Chloroflexi Actinobacteria,
Pedospherae)“anohe genusRubrobacter), and one fungal class (Glomeromycetegyre
consistently /affected by droughP (< 0.05; Figure 2 and Supplementary Table 1).
Glomeromycetes andGemmatimonadetes decreased, whereas Actinobacteria (genus
Rubrobacter, in/particular) and Chloroflexi, generally describad moredominant in
drylands, inereased

In parallel with consistermicrobial responses in terms of community assembly and
relative abundance of some taxa, other microbial community attributes and taxa responded in
a sitedependent manner, thiagghlighting the context dependency ssimedrought effects
(Supplementary, Figures-4 and Supplementary Table 2). For example, fungal abundance
and richness.increased in WYO, whereas fungal and bactehakssdecreased at the driest
location (SEV). Analyzedas effect sizes, the relative abundance of Chytridiomycota
decreased more at the warmest sites (Spearman’s d76, P = 0.049; Supplementary
Figure 6).4n contrast, Chloroflexi (Spearman’s rhe0=85,P = 0.016) and Rubrobacteria
(Spearman’s=rho = -0.8F = 0.027) increased in response to drought at the drier sites,
whereas Dothideomycetes (Spearman’s rho = 0.82,00023), Rubrobacteria (Spearman’s
rho = 0.86,P = 0.014) and Acidobacteria (Spearman’s rho = 0.9, ®001) were more
positively "affected at the most acidic sites (Supplementary Figure 6). Tenericutes
(Spearman’s rho = 0.8, = 0.010) and Chlamydiae (Spearman’s rhe0=6,P = 0.049)
responded more positively and negatively to drought, respectively, toward the wettest end of

the precipitation gradient (Supplementary Figure 6).

Changes in soil microbial community composition in response to drought occurred in
parallel with changes in potential microbial enzyme activity, with responses of the latter
being strongly site-dependent (Figure 3, Supplementary Figure 7 and Supplementary Table 3).

For example, two C-degrading enzymes and ordedlading enzyme increased in Australia
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328 in response to drought, whereas the deggrading enzymes ducosidase and

329 cellobiohydrolase increased in SGS anNZ respectively. Similar to fungal community
330 composition, droughsensitivity of enzyme activity was only apparent at the more mesic sites.
331 Potential enzyme activity was also highly significantly related to soil pH at the inter-
332 continental'seale (Figure &hd Supplementary Figure 8), peaking at neutral pH, results that
333 are in line with previous global studies evaluating soil enzyme relationships with soil pH
334 (Sinsabaugletal., 2008).
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The SEM for the fungal community structure explained 97% of the variance in the
first NMDS axis and 89% of potential microbial activity (Figure 3a). Similarly, the SEM for
the bacterial community structure explained 94% of the variance contained irstiNMIDS
axis and 85% of potential microbial activity (Figure 3b). In contrast, models using bacterial
and fungal richness, Shanndiversity, and abundance (QPCR) data explained a much lower
proportion‘ of the total variance in potential enzyme activitypfflementary Figure 10).
Indeed, models constructed using the relative abundance of major bacterial and fungal phyla
also consistently explained a lower proportion of the variance in microbial activity than
OTU-level analyses. In these models, the relatigndetween soil enzyme activity and
microbial ‘relative abundancewas, however, significantly positive in the case of
Acidobacteria, Verrucomicrobia, Glomeromycota and Basidiomycota, while it was negative
in th e case o fu-Proteobacteria, -Broteobacteriag-ProteobacteriaGemmatimonadetes,
Zygomycota and Chytridiomycota (Supplementary Table 4). As expected, experimental
drought reduced soil water content which, in turn, greatly influenced the structure of fungal
and bacterial communities, as defined by NiMDS axes. The SEM analyses also indicate a
significant inerease in fungal richness in response to drought (Supplementary Figure 10e). In
addition, SEM . indicate that the composition of both fungal and bacterial communities are
also greatly driven by variations in MAP and soil pH. In contrast, the effect of drought was
only statistically significant for bacterial, but not fungal, community composition, findings

that support our previous analysis.

DISCUSSION

Our study providenovel experimental evidence tldrbughtis amajor climaticdriver of the
assembly ‘of soimicrobial communitiesThis isin agreement witta previous observational
studythat suggestd that microbial communitiesare highly responsive to lonterm climatic
changes suchsas those from increases in afbligestreet al., 2015). However, our study
provides, to.the/best of our knowledge, the first widespread evidence (i.e., from multiple sites
spanning__agsprecipitation gradiemind two continents) that the assembly of microbial
communities: isalso highly vulnerable to sharm climatic changes (i.e.,-2 years of
experimentally imposed drought), which may affect the provision of key microbially
mediated ecosystem services such as decomposition and nutrient cycling.
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The magnitude of the fungal community response to drought at the species (OTU)
level was proportional to the amount of ambient precipitation, whereby the largest absolute
differences between control and droughted plots were found at the most mesic end of the
precipitation gradientrtepresented by KNZ and HAYS, in the US, and the Australian site.
This suggestsa common fungal community response pattern to drought in locations that are
thousandsof kilomeers apartand that show large differences in terms of microbial
community composion, as is particularly welllustrated by the large site separation along
the second NMDS axis. This greater microbial sensitivity to drought at more mesic sites
contrasts with ,the generally observed pattern of greater drought sensitivity of aboveground
productivity, in_more arid grassland&napp et al., 2015) which suggests that plant and

microbial gemmunities may respond differently along precipitation gradients

At the_higher taxonomic level (phylum and class), some consistent response patterns
also emergedFor example, Glomeromycetes and Gemmatimonadetes decreased, whereas
Actinobacteria=(genufubrobacter, in particular) and Chloroflexi, generally described as
more dominant-in drylands, increased. These bacterial taxa are highly resistant to desiccation
and low resource conditions, which may allow them to outcompete other microbial taxa
under extreme“drougliBattistuzzi & Hedges, 2009Particularly relevant was the response
of Tenericutes and Chlamydiae, two widely distributed bacterial phyla knovaofbaining
species that"Can cause serious plant and animal diseaséisataresponded more positively
and negatively to drought, respectively, toward the wettest end of the precipitation gradient.
Some studies have suggested an increase in soil pathogenicity under climate change scenarios
(van der Putten et gl.2010) whereas our results suggest more complexa-teependent
interactions between altered precipitation regimes and soil-borne pathogens.

We' assessed microbial community functioning through using a high-throughput
analysis of soil extracellular enzyme profiles. Extracellular enzymes decompose soil organic
matter and reflect microbial nutrient dema¢®insabaughet al., 2008). Changes in soll
microbial community composition in response to drought occurred in parallel with changes i
potential microbial enzyme activity, with responses of the latter being strongtjepieadent.
Similar to,fungal community composition, drought-sensitivity of enzyme activity was only
apparent at the more mesic sites, suggesting that drought-drigeatiattsin soil microbial
communities may further impact the functioning of essential ecosystem services such as

nutrient cycling and decomposition, particularly at wetter locations.
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The e of SEMsallowed us to build a more holistic understanding of the responses
of bacterial and fungahicrobial communities and soil functions to experimental drought. In
the case obothbacteria and fungiour SEM explained an enormous portion of the variation
in the distrilution of microbial communities and enzyme activities (>85%) contrast,
models usingbacterial and fungal richness, Shaulngrsity, and abundance (QPCR) data
explained/a much lower proportion of the total variance in potential enzyme activity.
Acidobaecteria, Verrucomicrobia, Glomeromycota and Basidiomycota showed a positive
effect on enzyme activities while it was negative in the case of o-Proteobacteria, -3
Proteobacteria, ,0-Proteobacteria, Gemmatimonadetes, Zygomycota and Chytridiomycota
(Supplementary Tabled), highlighting a strong link between microbial community
composition and soil enzyme activities. This result further sugtfesdtnot all major taxa are

equally important for maintaining highly functional grassland soils.

Strikingly, both extreme drought and higher soil water contda, latter mainly
explained doy=MAP (positively) and drougliteatment (negatively), enhanced potential
microbial raetivity, suggesting that the effects of letegm and shorterm climatic
phenomena may operate through different mechanisms. For example, gmegitee activity
may be associated with greater organic matter inputs and rhizosphere activity at the wetter
end of thewprecipitation gradient (Sinsabawglal., 2008), but substrate accumulation may
drive enzyme response underore droughted conditionfAustin et al., 2004) Greater
enzymeactivity may also be due to reduced competition with plants, given that the &vel
which mcrobes become watéimited are typically much lower than those for plants
(Schwinning.&,Sala, 2004; Delda-Baquerizcet al., 2013) or to extra organic matter inputs
associated ,with/the death of fine roots and shedding of foliage. Strikingvadsthe direct
negative link-between MAP and microbial activity, which may be due to the fact that most of
the positivereffects of MAP on microbial activity are indirect (e.g., via increased SWC and
variations'in“seil pH and microbial community composition). In addition, SEM models
indicate that the,composition of both fungal and bacterial communities are also greatly driven
by variations in_ MAP and soil pH. In contrast, the effect of drought was only statistically
significant for bacterial, but not fungalpmmunity composition, findings that support our
previous analysis. Taken together, our ressitggesthat droughtinduced changes in soil
microbial community composition and structure, rather than changes in abundance and

diversity, are likely to have & most importantconsequences in terms of ecosystem
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functioning and, thereforegffect the ability of these systems to provide key services on
which our societies and economies critically depend.

Our results provide unequivocal evidence that as little as 2-3 years of drought can
alter the assembly of microbial communities in grasslands from two continents, with clear
implications _for ecosystem functioning. In particular, our study reinforces the role of
distributed networks of comparable experiments to study the impacts of d(bregeret al .,

2013; Tielborgeret al., 2014) and unveiled consistent responses in contrasting grassland
ecosystems in Australia and North America that share similar climatic and edaphic conditions.
In responge toydrought, we foundgeeaterabundance of droughésistant bacterial taxa
(Actinobacteraand Chloroflexi) and lower abundance of a widely symbiotic, mycorrhizal
forming fungal class (Glomeromycetes). Climatenge driven impacts on soil microbial
communities. were modulated by the local environmental context, including an inarehse
decreasan _the relative abundance oo pathogenic taxa along a gradient of increasing
precipitatiom=However, unlike aboveground responses, many of the belowground variables
evaluated ((fer-example, fungal community composition) exhibited a particularly high degree
of resistance to drought at the driest end of the gradient. This pattern suggests that plant and
microbial communities may respond differently to droughing precipitation gradients,
which opensiew questions about the potential role of the disruption or weakening of plant-
microbial.intéractions under climate change scenarios daedexouphg in the response of

both groups.
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Figure. 1. (a) Location of study sites; (b) location of sites along the regional precipitation
gradient (color scale is in mm); (c) picture of study site at Sevilleta (EDGE); (d) picture of

DRI-Grass experimental facilitite legend is am Table 1.

Figure 2, Drought effects on microbial community composition and major bacterial and
fungal taxasBlue bars = control; red bars = drought.

Figure 3. Structural equation model depicting the direct and indirect effects of drought and
environmental conditions on microbial community composition and activity. (a) Fungal
communityyrepresented by the first two axes of the NMDS. (b) Bacterial community,
representedsby‘the first two axes of the NMB®B/C = soil water content. MAP = mean
annual precipitation. *R 0.05; **P < 0.01, ***P < 0.001.
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Supplementary Figures
Supplementary Figure 1. Site-level effects of drought on microbial community attributes.

H’ = Shannonwiener diversity index

Supplementary Eigures 2-5. Site-level effects of drought on major fungal and bacterial

phyla.

Supplementary Figur e 6. Significant relationships between siével treatment effect sizes

(Response Ratio, RR) and environmental drivers for microbial taxa and community attributes.

Supplementary Figure 7. Site-level effects of drought on: (a) soil water content (SWC), (b)
soil pH, (c) Bglucosidase activityd) cellobiohydrolase activity, (e)-Blicetyt

glucosaminidase activity, and (f) phosphatase activity. The six american sites are ordered
based on the-precipitation gradient, whereas the Australian site (D®$isomparable to
KNZ.

Supplementary Figure 8. Relationship between potential soil microbial activity and pH.

Supplementary Figure 9. General structure @& priori structural equation models. For

references supporting predicted pathways see Appendix A.

Supplementary-Figure 10. Structural equation model depicting the direct and indirect
effects of drought and environmental conditions on fungal and bacterial community attributes
(abundance, diversity and richness) and microbial activity.
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Table 1. Environmental characteristics of study sites. MAP = mean annual precipitation; MAT =

mean annual temperature.

Site nane Code Grasfandtype MAP (mm) MAT (°C) pH
Sevileta Ndiond'Wildlife Refige SEV Black Deset 242 13.3 85
SeviletaNationd Wildlife Refige SEV Blue Shorgrass 242 13.3 8.8
Centrd Plains Expeimental Range SGS Shorgrass 342 8.6 6.2
High PlansGrassandsReseach Center WYO Mixed 384 7.6 7.1
Hays Agrialtural Reseech Genter HAYS Mixed 577 120 7.2
Konza Praiie Biolagical Staion KNZ Tallgrass 860 129 6.4
DRI-GrassExpermental Site DG Austrdian grassland 800 170 6.6
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